Performance Measures for
RELAP5-3D Version 4.0.3

Dr. George L Mesina
INL/CON-12-27489

RELAPS5 International Users Seminar
Oct 23-24, 2012

ldaho National
Laboratory




—.
m Idaho National Laboratory

Outline

 Architectural change impacts timings
« Timing comparisons 4.0.3 vs. 2.4.3
 Detailed study of timings

* Runtime Improvements going forward



—~
m Idaho National Laboratory

Architectural change impacts timings

Version 2.4 database: mostly a single array (FA) in common storage

Version 4.0.3 database: memory in many modules with allocatable and
pointer arrays and derived types
Speed of access
Common blocks have the fastest memory access
Location is fixed at beginning of run
Allocatable memory is slower
Location and length unfixed until allocated
Extra overhead to access




—~
m Idaho National Laboratory

Speed of Accessing Data

Pointer arrays are slower
Location and length unfixed until allocated Common
Pointer overhead (pointing, nullity issues)

Access to allocatable/pointer array adds
overhead Allocatable

Simple Derived Types (SDT) = mix of fixed length
basic data types

DT access slightly slower than a basic data array

Fix-length SDT vs fix-length basic close in
access time SDT

Same for Allocatable SDT and pointer SDT

Complex Derived Types (CDT) has sub-derived-
types CDT

Overhead involved to access each sub-level(s)

Pointer

Faster




*“_b Idaho National Laboratory

Coding change impacts timings

Coding changes give and take speed in places

Direct access out of module VS. through subroutine call sequence
Overhead involved in subroutine argument access
Essentially no overhead in module access

Typically

Module Access Faster
Scalars, fix length array,
Simple DT

Subr. argument faster
Sub-derived type

Toss-up
Array section, pointer

Data attributes affect




\A m Idaho National Laboratory

Timings
* Most of the database changes introduced slower memory access
devices into 4.0.3.

» Code slowdown is expected for all problems.
— Five out of six test cases run slower

* For some problems, 4.0.3 is faster than 2.4.3
— Proper advantage taken of pointers and subroutine calls




F.\H“!; Idaho National Laboratory
Timing Study of 4.0.3

It was reported that 2.4 runs slower than very old versions like
rlpdoebf08
Sparked a comparison of those two and of 4.0.3 against 2.4.3

A Fortran program that extracts start and end time from RELAP5-3D
runs for any version was written to perform comparisons efficiently

NOTE

The changes reported here will be made in future code releases,
notin 4.0.3



*“_b Idaho National Laboratory

Detailed Study of Timings

Statistical profiling methods provide insight into code bottlenecks

Sample where program counter sits in code every so-many clock
cycles (often every 100 — 1000 cycles or so)

Varies from run to run of the same problem based on computer
workload
Affected by compiler options such as optimization & inlining

GPROF is a built-in timer available with Intel Fortran

It was applied to study Typical PWR 1200 second run
with default installation options
Semi- and nearly-implicit




q..“_b Idaho National Laboratory
Detalled Study of TYP1200

With default installation options plus activation for gprof capability
PHANTYV is largest time-consumer
MOVER and VEXPLT are next
MOVER copies memory from old to new on a time-step backup or from
new to old on a successful advancement
Much larger percentage since full back-up replaced partial

Solver routines should be largest, but are surprisingly efficient
LU factorization < 1.5% of run time
Back substitution < 1%



—~
m Idaho National Laboratory

Detailed Study of TYP1200 Nearly

It was applied to study Typical PWR 1200 second run

with default installation options

Semi- and nearly-implicit

PHANTYV is largest time-consumer

MOVER and VIMPLT are next
MOVER copies memory from old to new on a time-step backup or from
new to old on a successful advancement

Much larger percentage since full back-up replaced partial

Solver routines are again surprisingly efficient
LU factorization < 3%



q..“_b Idaho National Laboratory
Detailed Study of Timings

Open Speed Shop uses statistical sampling for closer view
Can show timings by function
Can show timings within routine — reveals slow lines and loops

All-function analysis for typical PWR 1200 second
Power (raising an number to a power) is most time-consuming
Should be investigated
PHANTYV is second largest
Heavily impacted by inlining



*“_b Idaho National Laboratory

Runtime Improvements Going Forward

Analysis of time-consuming lines shows
Some if-tests are among most time-consuming
Also some else-clauses (one BLANK else in particular)
A few do-loop statements
Some calculation statements ranked high
Some static quantities were recalculated every time-step

Mitigation Methods devised thus far:

For same if-clause(s) repeated with no change to quantities in a
subroutine

Store comparison in logical variable
Replace if-clause(s) with variable throughout routine

Similar strategy can be effective in a long much-used section of
code



—~
m Idaho National Laboratory

Runtime Improvements Going Forward

For time-consuming else clauses
Change test order to reduce # things checked
If things A & B are checked, but mostly B occurs, check B first
Reverse the if-test (apply .not. to the if-condition)

Turn off unneeded if-statements

Diagnostics that are never used except for debugging runs were
“live” in all the BPLU routines.

Applying an if-def reduced run time

Do loops run faster :
With unit (or fixed) stride
When the start and end values are variables, not calculations



—~
m Idaho National Laboratory

Runtime Improvements Going Forward

Blocks of calculation statements can be speeded up
By replacing a repeated array-reference with a scalar copy
Single calculation statements can sometimes be algebraically
simplified
Some FORTRAN 95 intrinsic routines are faster than loops
Introduce judiciously
Done in solver
Some static quantities that were calculated in a double loop in
subroutine LEVEL
This was reduced from 10 inefficient statements to four
It was moved to input processing



e
m ldaho National Laboratory

Runtime Improvements Going Forward

* Improvements from mitigation efforts based on Open Speed Shop
iInformation reduced runtime about 0.5%

* Improvements from compiler options can provide 0.5%

* Further improvements possible judicious use of:
— Subroutine call arguments
— Pointers to sub-types
— Intrinsic functions
— Interface blocks



—.
m Idaho National Laboratory

Conclusions

* 4.0.3 runs slower than 2.4.3 on most problems

* 4.0.3 runs faster than 2.4.3 on some problems

« Numerous runtime reductions have already been made in 4.1.0
- Many more techniques remain to be employed.



